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SUMMARY

We define a bootstrap sampling plan for the case-cohort design and present bootstrap
variance estimates and confidence intervals for the log relative hazard. The coverages of
these confidence intervals are found to be near nominal levels in simulations. A simple
null variance calculation, based on a superpopulation model, is shown to provide good
estimates of the power and efficiency of the case-cohort design.
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1. INTRODUCTION

The case-cohort design (Prentice, 1986) is economical for studying large cohorts because
covariates need not be measured on all members of the cohort. All members of the cohort
are followed until ‘death’ or censoring, but covariate information is only obtained for
those who die and for all members of a subcohort, é, that was randomly selected from
the entire cohort at the outset; see Table 1. However, estimation of the variance of B~,
the estimate of the regression coefficient B in a model with hazards proportional to
exp (BZ), is complex because contributions to the score statistic are correlated (Prentice,
1986). For ease of exposition, we take Z to be scalar.

The objective of this paper is to study the operating characteristics of two alternative
variance estimators for B. The first is based on a superpopulation model and is valid
under the null hypothesis 8 =0, provided censoring is independent of Z, as we assume.
This superpopulation variance estimator, Vsp, is attractive because it yields simple

Table 1. Numbers of subjects observed in a case-cohort experiment

Number of Number censored
deaths alive Total
Subcohort Q M-Q M =pN
Others D - Q=2A4; — (1-p)N
Total cohort D N-D N

Covariate information not available for N — D — (M — Q) subjects who neither die
nor are members of subcohort. Quantity 2A; is number of deaths among ‘others’.
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estimates of local power and relative efficiency and provides insight into the covariance
structure among contributions to the score. The second approach is based on a modified
bootstrap.

We assume that all study subjects are at risk from the beginning of the study, as in
the clinical trial described by Prentice (1986), so that successive subcohort risk sets are
subsets of previous subcohort risk sets.

2. VARIANCE ESTIMATES

2-1. Variance estimates based on superpopulation model when 8 =0

The kth ordered death time in the full cohort is called ¢, and we let n, be the number
of members of the subcohort still at risk at .. We call this risk set within the subcohort
Ck. The indicator variable A, is set to 1 if the kth death is outside the subcohort and 0
otherwise. The covariate value corresponding to the kth death is Z,, and we let Z,.,
denote the sum of the covariates over all members in Ck.

To compute Vsp, We assume that C is a random sample from an infinite population
with E(Z)=p and var (Z) = o”. Assuming the null hypothesis g = 0, and that censoring
is independent of Z, we can treat C, as a random sample drawn w1thout replace-
ment from C and hence from the original superpopulation. We estimate o as the sample
variance of the Z values in the subcohort. All the covariances below are conditional on
{n.} and can be used as estimates of unconditional covariances since the related scores
have conditional expectation zero. The variance of the score

Uc=Z —(Zis + M Z) (i + A ) ' = (M Zi — Zi ) (ni +A) ™!
is
var (Uy) = o*(n —1+ A ) (ne +Ay) 7 (1)

To compute cov (U, U;) with ;> 1, note that C is drawn without replacement from

C,. 1t follows that cov (Zk,Z) cov (Z, Z;+)=0, but cov (Z;, Zi+) = o*(1—A;) because
the subject who d1ed at ¢ was in Ce only if he was 1n the subcohort. Likewise
cov (Zi+, Z;1) = o’ n; since all n; members of C were in Cy.. From these relations we obtain

cov (Uy, Up) = o?mA{(me + Ay ) (nj+4;)} . (2)

Thus a positive covariance in (2) arises primarily from overlapping summands in Z,.,
and Z;,, but the covariance (2) vanishes when A; =0, because then

E(UU;))= E(U)E(U; | Z, Zis) = E(U) E{n (Zys — Z,4)} = 0.

Note the conditioning differs_from that in a similar argument of Prentice (1986). The
estimate of var (), namely Vgp, is obtained from (2) and (3) and is valid only when
B =0. We shall exploit it to study efficiency and to compute sample size for 8 near 0,
but do not advocate its use for analysis.

2-2. Variance estimates based on the bootstrap
Standard bootstrap methods (Efron, 1982; Efron & Tibshirani, 1986) cannot be used
because covariates are not available on all subjects in the cohort. However, the following
bootstrap sampling scheme yields good results. A more complex bootstrap procedure
that allowed the number of events in the subcohort to vary yielded similar results.
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For b=1,..., B proceed as follows.

(i) Obtain a bootstrap sample of D cases by sampling from the original D cases with
replacement. Assign the first Q sampled cases to the subcohort; the remaining D — Q fall
outside the subcohort.

(ii) Obtain a bootstrap sample of M — Q noncases by sampling with replacement from
the original M — Q noncases in the subcohort. The M — Q subjects will constitute the
noncases in the bootstrap subcohort.

(iii) The resulting bootstrap sample has the same numbers in each cell of Table 1 as
the original case-cohort sample. Calculate the pseudo-maximum likelihood estimate Bb
just as for the original sample estimate ﬁ from the pseudo-score equation (6) of Prentice
(1986). With extreme designs and discrete Z, all cohort members and cases may be
concordant for exposure, in which case there is no statistical information about 8. In
such cases, we discard the current bootstrap sample and replace it with another, just as
we would ignore such results if they had occurred in the original case-cohort experiment.
For dichotomous exposures, the quantity B* that maximizes the pseudolikelihood of
Prentice (1986) can be infinite, as when all D persons who died were exposed. We
therefore define our estimate 8 as {sgn (8*)}{min (|8*, 8*)}, where the truncation point

B*=log [(D+){(1=p)(M — Q) +3}() {p.(M - Q)+3} '],

and where p, is the proportion of subcohort members who are exposed. The truncation
point B8* is the logarithm of the odds ratio in a classification on survival and exposure
in which 1 has been added to each cell and in which all persons who died were exposed.
These truncations rarely come into play in bootstrapping, and almost never are required
in the original partial likelihood or case-cohort estimates of B. For consistency the same
truncation is used in all cases.

Obtain the bootstrap variance estimator (Efron, 1982) from Ve=(B-1)"'S(8,- B )2,
where B is the average of the B bootstrap estimates. From the preceding comment, Vg
may be regarded as the variance estimate for the truncated case-cohort estimator.

3. SIMPLE SAMPLE SIZE AND EFFICIENCY CALCULATIONS FOR SMALL B
BASED ON THE SUPERPOPULATION MODEL

Self & Prentice (1988) computed the asymptotic relative efficiency of the case-cohort
design, relative to the full cohort design, for a fixed binary covariate and arbitrary .
However, they restricted calculations to the case of simultaneous entry into the cohort,
no losses to follow-up, and final analysis at a fixed time t. Efficiency calculations based
on Vgp are valid only for B near 0 but do allow for competing risks and other forms of
loss to follow-up as well as for a period of accrual.

Our approach is to use (1) and (2) by replacing n, and n; by their expected values at
the times #, and t, based on knowledge of the accrual plan, competing risks, and failure
rates (Rubinstein, Gail & Santner, 1981). The procedure is as follows. First, solve equation
(A2) of Rubinstein et al. (1981) to obtain T;, the expected time required until death j
(j=1,..., D). Determine the expected number at risk at T;, namely, N; = NS(T;) C(T;),
where S and C are the assumed survivor functions for death and censoring, respectively,
and N is the original cohort size. Calculate X var (U;) and X cov (U;, Uy) from (1) and
(2) by replacing n, and n; by pN, and pN;, respectively, and A; by its expectation, 1 —p.
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Then obtain the estimate (Prentice, 1986)
Vee={28(U)) +2 X, ; &(Us, UDHES(U))} 2, (3)

where 7, c are estimated variances and covariances. For the full cohort, the Cox (1972)
estimate [3 has variance estimator V obtained by setting p =1 in this procedure. The
asymptotic relative efficiency of the case-cohort to the full cohort design is estimated as
VC/ Vsp The variance estimator for B given by Prentice (1986) is denoted by V.

4. SIMULATION STUDIES
4-1. Simulation methods

Several designs were simulated to study Vp, Vsp, VB and the coverage of their associated
confidence intervals. For each design, 1000 independent cohorts, each of size N =1000
were simulated, except for two cases in which N = 5000 was used. Exactly Np, subjects
with Z =1, exposed, and N(1—p,) subjects with Z =0, unexposed, were in each cohort.
Independent exponential failure times with hazards 1 and e’ were generated for the
exposed and unexposed groups, respectively. Independent, exponentially distributed
failure times for competing risks were also generated with hazards ¢, and ¢, respectively
for those with Z =0 and Z = 1. Independent cohort accrual times were uniform on [0, 7),
and observation continued beyond 7 to time 7, when the experiment ended. Thus, the
maximum duration of follow-up was uniformly distributed on [T — 7, T]. We specified
the required total number of expected events and the ratio of accrual time to total
experimental time, 7/ T. Then T was determined following Rubinstein et al. (1981). To
simulate the case-cohort experiment, we randomly selected a subcohort of size M = pN
without replacement.

For each simulated cohort, we obtained B B and four estimates of var (ﬂ) namely
Vp, Vsp and VB for B=50 and B =200. Nmety ﬁve percent confidence intervals from
the Cox estimator were computed as Bil 96 V2 Similar confidence intervals were
computed from B. We also obtained a confidence interval from the 2-5% and 97-5%
percentiles of the B =200 bootstrap replications.

Random numbers were obtained from the International Mathematical and Statistical
Libraries (1984) subroutines GGUBS and GGEXN. A typical run with 1000 simulations
took about 1000 seconds of central processor time on a Cray X-MP 24 supercomputer.

4-2. Simulation results

The coverages are near the nominal 95% level for all procedures shown in Table 2,
and V50 performs as well as Vzoo It is noteworthy that the percentile method works well
with only B =200 replications (Efron, 1987). The variance is not greatly affected by
cohort size, the accrual pattern, data not shown, or the strength of the competing risk,
but, as theory predicts, the variance does tend to decrease with increasing numbers of
expected deaths, and with subcohort size. The variance is lower for p, values of 0-1 and
0-9 than for p, =0-5. The ratios of the empirical variance of /3 to the average values of
Vp, Vsp and VB are within 10% of 1-0 except for VB with p,=0-1 and 0-9. For these
designs, only 10 exposed and unexposed cases, respectively, are expected in the entire
cohort, and thus only 2 in the subcohort. The bias, not shown, in estimating 8 was always
close to zero except when p, +0-5. Even with p, =0-1 or 0-9, however, the coverage of
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Table 2. Simulations of coverage of confidence intervals

Special
conditiont

M=2D

$o=35,¢,=10

p.=09

pe=0-5

p.=0-1

$o=5, ¢, =10

pP.=09

p.=05

p.=0-1

Full Sohort
Ve

946
0-143
1-05

948
0-083
1-07

961
0-084
0-99

962
0-123
1-04

959
0-041
0-98

955
0-123
1-06

962
0-207
1-13

964
0-094
0-96

950
0-098
1-10

965
0-245
1-07

957
0-045
0-99

947
0-073
1-01

‘7P vsp
(a) Null case
951 944
0-211 0-209
0-99 1-00
949 947
0-124 0-124
1-00 1-00
956 954
0-127 0-126
0-99 1-00
951 942
0-185 0-180
1-02 1-04
957 958
0-062 0-062
0-92 0-92
952 939
0-184 0-178
1-06 1-10
(b) Alternative case
947
0-271
1-10
955
0-133
0-98
950
0-139
1-05
962
0-300
1-07
960
0-065
1-01
958
0-134
1-01

Case-cohort
VSO

952
0-227
0-92

957
0-130
0-95

955
0-134
0-94

962
0-217
0-87

952
0-063
0-90

964
0-242
0-81

960
0-310
0-96

952
0-139
0-94

951
0-147
0-99

949
0-353
0-90

958
0-066
0-99

966+
0-148
0-91

VZOO

952
0-226
0-93

957
0-130
0-95

960
0-134
0-94

965%
0-220
0-85

957
0-063
0-90

973%
0-239
0-81

958
0-312
0-96

958
0-141
0-93

956
0-148
0-98

950
0-356
0-90

961
0-067
9-98

969+
0-148
0-91

121

%

945

944

963

948

954

943

9341

949

951

932%

957

955

Top number, coverage of nominal 95% confidence interval; middle number, average value of corresponding
variance estimate for B; bottom number, ratio of variance estimate s> = E(B~ —B)?/999 to average estimated
variance. V¢, Vp, VSP, ‘750 and Vs, procedures based on variance estimates; %, bootstrap percentile
confidence interval.
t Unless otherwise noted, all simulations have cohort size N =1000, B8 =0 for null cases, B =log2 for
alternatives, subcohort size M =2D, accrual time 7= T/2, proportion exposed p, =0-5, and hazards of
competing risk ¢, = ¢, =5, where ¢, corresponds to X =0 and ¢, to X =1.
t Estimated coverage is outside interval (936, 964), which should contain 95% of cases provided coverage
equals nominal 95%.
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these confidence intervals was near nominal levels. Coverages were less than nominal
for confidence intervals based on VSP with B £ 0, data not shown. Failure to account for
covariances in (3) leads to underestimates of variance of 30% in typical cases.

The quantity Vgp provides a good guide to observed power for p, =0-5, even for the
nonlocal alternative 8 =1log 3; see Table 3. Power increases with increasing numbers of
deaths and with subcohort size M. With M = 8D =400, the subcohort design has nearly
the same power as the full cohort design. For fixed D =50, 8 =log2, p.=0-5and M =2,
other aspects of the design characterized by 7, ¢,, ¢, and N have very little impact on
power as predicted by the superpopulation model and as found empirically. The use of
Vsp leads to overestimates of power for B8 =1log2 when p, =0-1 and to underestimates
when p, = 0-9, both for the full cohort and for the case-cohort analyses. This is probably
because, with p, =0-1, some risk sets become exhausted, or nearly exhausted, of exposed
individuals as the trial proceeds and provide little information on B, whereas, for p, =0-9,
loss of exposed individuals produces more nearly balanced numbers of exposed and
unexposed members in later risk sets, and these balanced risk sets provide more informa-
tion about 8.

Calculations of Vsp also provide a good guide to the ratio of the empirical variances
of B and ,3, see Table 3. These ratios are based on independent sets of 1000 simulations
with B8 =0 which are distinct from the other simulations used to study power in Table
3. Note that, with M = 8D =400, the efficiency of the case-cohort design is calculated
as 0-92, in good agreement with the observed variance ratio 0-94, and slightly higher
than would be predicted from the formula 8/(8+1)=0-89, which is the ratio of the
variance for a case-control study with 8 controls per case compared to the variance with
infinite controls per case (Ury, 1975).

Table 3. Validity of superpopulation variance as guide to power and efficiency

Full cohort

Special power Case-cohort power R Variance ratios}

D  conditionst ¥ Ve ¥ #'/P ‘»bzoo Yo, p p
30 B=log3 0-905 0-886 0-779 0-744 0-702 0-763 0-66 0-72
50 M=D 0-782 0-770 0-515 0-493 0-479 0-502 0-48 0-52
50 M=2D 0-782 0-755 0-628 0-585 0-575 0-581 0-66 0-72
50 M=4D 0-782 0-769 0-706 0-677 0-670 0-678 0-81 0-80
50 M=8D 0-782 0-776 0-752 0-761 0-744 0-761 0-92 0-94
50 7=0 0-789 0-715 0-637 0-577 0-562 0-590 0-66 0-69
50 =T 0-782 0-773 0-594 0-610 0-582 0-604 0-60 0-64
50 ¢o=¢=0 0-782 0-762 0-640 0-605- 0-591 0-625 0-68 0-70
50 ¢o=¢;=15 0-782 0-770 0-591 0-598 0-570 0-610 0-60 0-66
50 N =5000 0-782 0-776 0-630 0-629 0-611 0-628 0-66 0-65
100 p.=0-9 0-664 0-471 0-510 0-393 0-274 0-471 0-65 0-68
100 p.=0-5 0-964 0-968 0-873 0-884 0-882 0-885 0-65 0-70
100 p.=0-1 0-664 0-803 0-510 0-613 0-582 0-585 0-65 0-67
100 B=log(1-5) 0-644 0-638 0-494 0-494 0-493 0-494 0-65 0-63

Quantity ¢, predicted power based on superpopulation model; !l‘c, glr,,, apzoo and tﬁ% , fractions of rejections

observed in 1000 simulations. One-sided 0-05 level rejection regions like B>l 645{V} used, except for

percentile method for which rejection occurred when 0 fell below the Sth bootstrap percentile.

T Unless otherwise noted, simulations use 8 =log 2, cohort size N = 1000, subcohort size M =2D, accrual
time 7=T/2, competmg risk hazards ¢o— 5 and ¢, =5, and proportion exposed p, =0-5.

¥ Ratio p of variance of B to variance of B computed theoretically from superpopulation model. Ratio p
of corresponding empirical variances computed from independent sets of 1000 simulations with 8 =0.
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When we applied the methods in § 3 to a trial with simultaneous entry and no loss to
follow-up, calculated efficiencies were in close agreement with those in Table 1 of Self
& Prentice (1988). That table shows that the asymptotic relative efficiency increases only
very slightly as B changes from 0 to log 2, in accord with our empirical findings that
calculations based on VSP are sufficiently accurate for power estimates.

5. DISCUSSION

Our simulations confirm that a simple superpopulation model may be used to predict
the power of the case-cohort design, and its efficiency, compared to the full cohort, in
the presence of administrative censoring and competing risks, provided these act equally
on the two exposure groups.

Simulations confirm that the bootstrap procedure has near nominal operating charac-
teristics. With subcohort size 200 and 100 events, calculations of ‘7200 took about 4 times
aslong as V. The bootstrap calculations may be conveniently added to standard programs
and may be useful in more complex case-cohort designs.
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